ENANTIOSELECTIVE HANTZSCH DIHYDROPYRIDINE SYNTHESIS VIA METALATED CHIRAL ALKYL ACETOACETATE HYDRAZONES¹

Dieter ENDERS* , Stephan MÜLLER and Ayhan S. DEMIR

Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule Professor-Pirlet-Str. 1, D-5100 Aachen, FRG

<u>Summary</u>: An efficient, overall enantioselective variant of the Hantzsch synthesis of 4-aryl-1,4-dihydropyridines 5 (ee = 84 - 98%), important biologically active compounds (e. g. as calcium channel blockers), is described. Key step of the new procedure is the asymmetric Michael addition of metalated chiral alkyl acetoacetate hydrazones (S)-2 to the Knoevenagel acceptors 4. An accurate method to determine the enantiomeric excess of chiral dihydropyridines is also reported.

Since their discovery by Hantzsch more than 100 years ago^2 , 1,4-dihydropyridine (DHP) derivatives³have gained much interest as coenzymes in dehydrogenases (NAD(P)H)⁴, as intermediates in alkaloid synthesis⁵, and because of the broad spectrum of their biological activities³. Of special importance is their use as potent calcium channel blockers⁶; for instance, nifedipine[®]A is used clinically against angina pectoris and hypertension. Unsymmectrically substituted 4-aryl-1,4-dihydropyridines, such as nitrendipine[®]B (R¹=CH₃, R²=C₂H₅)⁷, are chiral and exist as two enantiomers. As expected, the biological activities of such DHP enantiomers are different ^{6b,8}, culminating in recent reports of opposite activity (Ca²⁺ antagonist and Ca²⁺ agonist)⁹. Thus, enantioselective syntheses of chiral 4-aryl-1,4-dihydropyridines are highly desirable ¹⁰.

We now describe an efficient asymmetric synthesis (overall yields: 64-72%, ee = $84-\ge98$ %) of DHP derivatives 5. In contrast to the techniques used previously $^{6b,7-10}$, in our new enantioselective Hantzsch variant the chirality information is introduced via the nitrogen functionality.

As shown in the scheme, alkyl acetoacetates $\underline{1}$ are condensed with the chiral hydrazine (S)-(-)-1-amino-2-(dimethylmethoxymethyl)pyrrolidine (SADP)¹¹ to the corresponding SADP-hydrazones (\underline{S})- $\underline{2}$, which mainly exist as their tautomeric enehydrazines (NMR, IR). After metalation with n-butyllithium (THF, -78°C, 10 min) and subsequent dropwise addition of the acceptors (\underline{Z})- $\underline{4}$ ¹² (dissolved in THF), the reaction mixture is stirred for 1 h at -78°C and then worked up (aqueous NH₄Cl/ether) affording the Michael adducts $\underline{3}^{13}$. Refluxing of the crude adducts in MeOH/aqueous NH₄Cl solution at 65°C for 1 h releases the chiral auxiliary SADP and effects ring closure to the dihydropyridines $\underline{5}$, which are purified by flash chromatography (recycling of the chiral auxiliary).

The enantiomeric purity of the DHP derivatives 5 was determined by 1 H NMR-LIS technique (on the methyl singlets at 2- and 6-position) and by HPLC using β -cyclodextrin as chiral stationary phase 14 (see figure and table). The absolute configurations given are based on the correlation of polarimetric data (see table) and assuming a uniform mechanism for all 1.4-additions according to the general scheme. Both enantiomers of the chiral DHP's 5 may be obtained at will by either changing the chiral auxiliary from SADP to its

antipode RADP (see <u>5d</u>) or by simply changing the groups R^1 and R^2 of the acceptor and chiral nucleophile respectively (see <u>5c</u>, synthon control of enantioselectivity).

Our recent findings that other acceptors of type $\underline{4}$ bearing a nitro or an acetyl group instead of the ester function, can also be used successfully, indicate a broad applicability of this novel asymmetric Hantzsch DHP synthesis¹⁵.

Figure. Determination of enantiomeric excess of DHP derivatives 5 by ¹H NMR-LIS and HPLC-CSP technique.

та	ble.	Highly	enantiomerica	lly e	enriched	4-aryl-1	,4-dihydr	opyridines	5	prepared
by	asyr	metric	synthesis via	SAD	P-/RADP-h	nydrazone	s.		_	

5	1	R ²	_3 0	overall	m.p. [ºC]	[α] ²⁵ [°]	eea	confg.b
	R		R - Z	yield [%]		(c,acetone)	[%]	
<u>a</u>	C ₃ H ₅	C ₂ H ₅	н	69	105	+29.4 (1.1)	84	(S)
b	сн ₃	i-C ₃ H7	3,4-0CH ₂ 0	71	130	+ 6.5 (1.3)	85	(R)
c	t-C ₄ H ₉	H ₃ CO(CH ₂) ₂	3,4-0CH ₂ 0	67	134	-17.0 (1.0)	94	(S)
<u>c</u>	н ₃ со(сн ₂) ₂	t-C ₄ H9	3,4-0CH ₂ O	67	134	+17.4 (1.0)	≧96	(R)
d	t-C ₄ H9	С ₂ н ₅	4-CH3	64	140	+12.9 (1.0)	92	(S)
d	t-C ₄ H9	С ₂ н ₅	4-CH3	65	140	-12.4 (1.0)	91	(R)C
<u>e</u>	t-C ₄ H9	CH ₃	3,4-(OCH ₃)2	2 72	144	+14.4 (1.0)	98	(S)
f	t-C ₄ H ₉	с ₂ н ₅	3,4,5-(OCH	3)3 70	152	+11.3 (1.0)	≧96	(S)
đ	t-C ₄ H9	с ₂ н ₅	2-pyridyl	64	185	+ 2.0 (1.0)	≧9 6	(S)

a) Determined by ¹H NMR-LIS (90 MHz, CDCl₃) or by HPLC-CSP (see figure). b) Using our new procedure (SADP auxiliary) we prepared dihydropyridines (+)-<u>B</u> (R¹=CH₃, R²=i-C₃H₇ and R¹=C₂H₅, R²=i-C₃H₇); thus, we assign the (R)-configuration, if R²>R¹ ¹⁶. c) RADP was used as chiral auxiliary. Acknowledgements: This work was supported by the Fonds der Chemischen Industrie. We thank Degussa AG and BASF AG for providing with chemicals.

REFERENCES AND NOTES

- 1. Part of the dissertation of S.M., RWTH Aachen, 1988 and the diploma work, University of Bonn, 1986; part of the dissertation of A.S.D., University of Bonn, 1985.
- A. Hantzsch, Liebigs Ann. Chem. <u>215</u> (1882) 1.
 Most recent reviews: A. Sausins, G. Duburs, Heterocycles <u>27</u> (1988) 269, 291.
- 4. J. Everse, B. Anderson, K.-S.You, The Pyridine Nucleotide Coenzymes, Academic Press, New York, 1982.
- 5. L.-F. Tietze, A. Bergmann, K. Brüggemann, Synthesis 1986, 190, and lit. cit. therein.
- 6. a) G.Grün, A. Fleckenstein, Arzneim.-Forschung (Drug. Res.) <u>22</u> (1972) 334;
 b) F. Bossert, H. Meyer, E. Wehinger, Angew. Chem. <u>93</u> (1981) 755; Angew.Chem. Int. Ed. Engl. 20 (1981) 762; c) R.A. Janis, D.J. Triggle, J. Med. Chem. 26 (1983) 775.
- 7. H. Meyer, F. Bossert, E. Wehinger, K. Stoepel, W. Vater, Arzneim.-Forsch. (Drug Res.) <u>31</u> (1981) 407. 8. K. Tamazawa, H. Arima, T. Kojima, Y. Isomura, M. Okada, S. Fujita, T. Fu-
- ruya, T. Takenaka, O. Inagaki, M. Terai, J. Med. Chem. 29 (1986) 2504, and lit. cit. therein.
- 9. a) G. Franckowiak, M. Bechem, M. Schramm, G. Thomas, Eur. J. Pharmacol. 114 (1985) 223. b) R.P. Hof, U.T. Ruegg, A. Vogel, J. Cardiovascular Pharmacol. <u>7</u> (1985) 689.
- 10. For a recent alternative approach see: A.I. Meyers, T. Oppenlaender, J. Chem. Soc., Chem. Commun. 1986, 920.
- 11. For the large scale synthesis of SADP and similar auxiliaries see: D. Enders, H. Kipphardt, P. Gerdes, L.J. Brena-Valle, V. Bhushan, Bull. Soc. Chim Belg. 97 (1988) September issue.
- 12. The Knoevenagel acceptors $(\underline{Z})-\underline{4}$ were prepared by condensation of aromatic aldehydes and alkyl acetoacetates (piperidine, dioxane, 20°C^a or piperidine, HOAc, benzene, reflux^b), followed by recrystallization (Et₂O, petrol ether): a) R. Danion-Bougot, R. Carrié, Bull. Soc. Chim. Fr. 1968, 2526; b) J. Koo, J. Am. Chem. Soc. 75 (1953) 2000.
- 13. For related work see: a) D. Enders, B.E.M. Rendenbach, Chem. Ber. 120 (1987) 1223; b) D. Enders, A.S. Demir, B.E.M. Rendenbach, Chem. Ber. 120 (1987) 1731; c) D. Enders, A.S. Demir, H. Puff, S. Franken, Tetrahedron Lett. 28 (1987) 3795; d) D. Enders, V. Bhushan, Tetrahedron Lett.29 (1988) 2437.
- 14. For other applications see: W.L. Hinze, T.E. Riehl, D.W. Armstrong, W. De-
- Mond, A. Alak, T. Ward, Anal. Chem. <u>57</u> (1985) 237. 15. The spectroscopic data (NMR, IR, MS) and elemental analyses of all new compounds are in agreement with the structures given.
- 16. E. Wehinger, H. Meyer, F. Bossert, W. Vater, R. Torwart, K.Stoepel, S. Kazda, D.O.S. 2 935 451, Bayer AG, 1981; C.A. 95 (1981)P 42922u.

(Received in Germany 22 September 1988)